Micro-Structures and High-Temperature Friction-Wear Performances of Laser Cladded Cr–Ni Coatings

نویسندگان

  • Li Jiahong
  • Kong Dejun
چکیده

Cr-Ni coatings with the mass ratios of 17% Cr-83% Ni, 20% Cr-80% Ni and 24% Cr-76% Ni were fabricated on H13 hot work mould steel using a laser cladding (LC). The surface-interface morphologies, chemical elements, surface roughness and phase composition of the obtained Cr-Ni coatings were analysed using a scanning electron microscope (SEM), energy disperse spectroscopy (EDS), atomic force microscope (AFM) and X-ray diffractometer (XRD), respectively. The friction-wear properties and wear rates of Cr-Ni coatings with the different mass ratios of Cr and Ni at 600 °C were investigated, and the worn morphologies and wear mechanism of Cr-Ni coatings were analysed. The results show that the phases of Cr-Ni coatings with mass ratios of 17% Cr-83% Ni, 20% Cr-80% Ni and 24% Cr-76% Ni are composed of Cr + Ni single-phases and their compounds at the different stoichiometry, the porosities on the Cr-Ni coatings increase with the Cr content increasing. The average coefficient of friction (COF) of 17% Cr-83% Ni, 20% Cr-80% Ni and 24% Cr-76% coatings are 1.10, 0.33 and 0.87, respectively, in which the average COF of 20% Cr-80% Ni coating is the lowest, exhibiting the better anti-friction performance. The wear rate of 17% Cr-83% Ni, 20% Cr-80% Ni and 24% Cr-76% Ni coatings is 4.533 × 10-6, 5.433 × 10-6, and 1.761 × 10-6 N-1·s-1, respectively, showing the wear resistance of Cr-Ni coatings at a high temperature increases with the Cr content, in which the wear rate is 24% Cr-76% Ni coating with the better reducing wear. The wear mechanism of 17% Cr-83% Ni and 20% Cr-80% Ni and 24% Cr-76% coatings at 600 °C is primarily adhesive wear, and that of 24% Cr-76% coating is also accompanied by oxidative wear.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Microstructure and Antiwear Property of Laser Cladding Ni–Co Duplex Coating on Copper

Ni-Co duplex coatings were cladded onto Cu to improve the antiwear properties of Cu products. Prior to laser cladding, n-Al₂O₃/Ni layers were introduced as interlayers between laser cladding coatings and Cu substrates to improve the laser absorptivity of these substrates and ensure defect-free laser cladding coatings. The structure and morphology of the coatings were characterized by scanning e...

متن کامل

Tribological behavior of sputter-deposited MoSX/Ni coatings

AbstractSputtered MoS2 coatings have been mostly used as a solid lubricant. In this investigation, MoSx/Ni composite coatings with Ni contents varying from 0 to 22 % were deposited onto steel substrate using a DC magnetron sputter process. The MoS2/Ni ratio in the coatings was controlled by sputtering the composite targets. The composition, microstructure, and mechanical properties of the...

متن کامل

A Study of the Tribological Properties of Sputter-deposited MoSX/Cr Coatings

In this investigation, MoSx/Cr coatings were deposited by direct-current magnetron sputter onto Ck45 (AISI 1045) plain carbon steel substrates. The MoSx/Cr ratio in the coatings was controlled by sputtering the composite targets. The chemical characterization was performed using EDX (energy dispersive X-ray analysis); the structural characterization was accomplished by X-ray diffraction (XRD) s...

متن کامل

Effects of V and Cr on Laser Cladded Fe-Based Coatings

Fe-based coatings with high V and Cr content were obtained by laser cladding using Fe-based powder with different Cr3C2 and FeV50 content. The results showed that Fe-based coatings were uniform and dense. The constituent phases were mainly composed of α-Fe solid solution with the increase of Cr3C2 and FeV50, γ-Fe and V8C7 phases were achieved. The microstructure of the coatings exhibited a typi...

متن کامل

Microstructure, Wear Resistance and Oxidation Behavior of Ni-Ti-Si Coatings Fabricated on Ti6Al4V by Laser Cladding

The Ni-Ti-Si composite coatings were successfully fabricated on Ti6Al4V by laser cladding. The microstructure were studied by SEM (scanning electron microscopy) and EDS (energy dispersive spectrometer). It has been found that Ti₂Ni and Ti₅Si₃ phases exist in all coatings, and some samples have TiSi₂ phases. Moreover, due to the existence of these phases, coatings presented relatively higher mic...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 11  شماره 

صفحات  -

تاریخ انتشار 2018